Chirp Z 变换
与离散傅里叶变换类似,Chirp Z 变换是给出多项式 \(f(x) = \sum_{i = 0}^{m - 1} f_i x^i \in \mathbb{C}\lbrack x\rbrack\) 和 \(q \in \mathbb{C} \setminus \{0\}\) 求出 \(f(1), f(q), \dots, f(q^{n - 1})\) 的一种算法,不要求 \(q\) 为单位根.也可用于数论变换.后文将介绍 Chirp Z 变换与其逆变换.
Chirp Z 变换
根据定义,Chirp Z 变换可以写作
\[
\operatorname{\mathsf{CZT}}_n : \left(f(x), q\right) \mapsto
\begin{bmatrix}
f(1) & f(q) & \cdots & f\left(q^{n - 1}\right)
\end{bmatrix}
\]
其中 \(f(x) := \sum_{i = 0}^{m - 1} f_i x^i \in \mathbb{C}\lbrack x\rbrack\) 且 \(q \in \mathbb{C} \setminus \{0\}\).
Bluestein 算法
考虑
\[
ij = \binom{i}{2} + \binom{-j}{2} - \binom{i - j}{2}
\]
其中 \(i, j \in \mathbb{Z}\),我们可以构造
\[
\begin{aligned}
G(x) & := \sum_{i = -(m - 1)}^{n - 1} q^{-\binom{i}{2}}x^i, \\
F(x) & := \sum_{i = 0}^{m - 1} f_i q^{\binom{-i}{2}}x^i.
\end{aligned}
\]
其中 \(G(x) \in \mathbb{C}\left\lbrack x, x^{-1}\right\rbrack\),且对于 \(i = 0, \dots, n - 1\) 我们有
\[
\begin{aligned}
\left\lbrack x^i\right\rbrack\left(G(x)F(x)\right) &=
\sum_{j = 0}^{m - 1}\left(\left(\left\lbrack x^{i - j}\right\rbrack G(x)\right)\left(\left\lbrack x^j\right\rbrack F(x)\right)\right) \\
&= \sum_{j = 0}^{m - 1} f_j q^{\binom{-j}{2} - \binom{i - j}{2}} \\
&= q^{-\binom{i}{2}} f\left(q^i\right)
\end{aligned}
\]
且 \(q^{\binom{i + 1}{2}} = q^{\binom{i}{2}}\cdot q^i\),\(\binom{-i}{2} = \binom{i + 1}{2}\).可以由一次多项式乘法完成求算,该算法被称为 Bluestein 算法.
模板(P6800【模板】Chirp Z-Transform)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 | std::vector<uint> CZT(const std::vector<uint>& f, uint q, int n) {
if (f.empty() || n == 0) return std::vector<uint>(n);
const int m = f.size();
if (q == 0) {
std::vector<uint> res(n, f[0]);
for (int i = 1; i < m; ++i)
if ((res[0] += f[i]) >= MOD) res[0] -= MOD;
return res;
}
// H[i] = q^(binom(i + 1, 2))
std::vector<uint> H(std::max(m, n - 1));
H[0] = 1; // H[0] = q^0
uint qi = 1; // qi = q^i
for (int i = 1; i < (int)H.size(); ++i) {
qi = (ull)qi * q % MOD;
// H[i] = q^(binom(i, 2)) * q^i
H[i] = (ull)H[i - 1] * qi % MOD;
}
// F[i] = f[i] * q^(binom(i + 1, 2))
std::vector<uint> F(m);
for (int i = 0; i < m; ++i) F[i] = (ull)f[i] * H[i] % MOD;
std::vector<uint> G_p(m + n - 1);
// G[i] = q^(-binom(i, 2)), -(m - 1) ≤ i < n
uint* const G = G_p.data() + (m - 1);
const uint iq = InvMod(q);
// G[-(m - 1)] = q^(-binom(-(m - 1), 2)),
// binom(-(m - 1), 2) = (-(m - 1)) * (-(m - 1) - 1) / 2
// = (m - 1) * m / 2
G[-(m - 1)] = PowMod(iq, (ull)(m - 1) * m / 2);
uint qmi = PowMod(q, m - 1); // q^(-i), -(m - 1) ≤ i < n
for (int i = -(m - 1) + 1; i < n; ++i) {
// q^(-binom(i, 2)) = q^(-binom(i - 1, 2)) * q^(-(i - 1))
G[i] = (ull)G[i - 1] * qmi % MOD;
// q^(-i) = q^(-(i - 1)) * q^(-1)
qmi = (ull)qmi * iq % MOD;
}
// res[i] = q^(-binom(i, 2)) * f(q^i), 0 ≤ i < n
std::vector<uint> res = MiddleProduct(G_p, F);
for (int i = 1; i < n; ++i) res[i] = (ull)res[i] * H[i - 1] % MOD;
return res;
}
|
逆 Chirp Z 变换
逆 Chirp Z 变换可以写作
\[
\operatorname{\mathsf{ICZT}}_n :
\left(
\begin{bmatrix} f(1) & f(q) & \cdots & f\left(q^{n - 1}\right)
\end{bmatrix},q
\right)
\mapsto f(x)
\]
其中 \(f(x) \in \mathbb{C}\left\lbrack x\right\rbrack_{< n}\) 且 \(q \in \mathbb{C} \setminus \{0\}\),并且 \(q^i \neq q^j\) 对于所有 \(i \neq j\) 成立,这是多项式插值的条件.
Bostan–Schost 算法
回顾 Lagrange 插值公式 为
\[
f(x) = \sum_{i = 0}^{n - 1}\left(f\left(x_i\right)\prod_{0 \leq j < n \atop j \neq i} \frac{x - x_j}{x_i - x_j}\right)
\]
且 \(x_i \neq x_j\) 对于所有 \(i \neq j\) 成立.与 多项式的快速插值 中相同,我们令 \(M(x) := \prod_{i = 0}^{n - 1}\left(x - x_i\right)\),根据洛必达法则,有
\[
M'(x_i) = \lim_{x \to x_i} \frac{M(x)}{x - x_i} = \prod_{0 \leq j < n \atop j \neq i}\left(x_i - x_j\right)
\]
修正 Lagrange 插值公式 就是
\[
f(x) = M(x)\left(\sum_{i = 0}^{n - 1}\frac{f\left(x_i\right)/M'(x_i)}{x - x_i}\right)
\]
那么现在我们有
\[
f(x) = M(x)\left(\sum_{i = 0}^{n - 1}\frac{f\left(q^i\right)/M'\left(q^i\right)}{x - q^i}\right)
\]
其中 \(M(x)=\prod_{j = 0}^{n - 1}\left(x - q^j\right)\).若我们设 \(n\) 为偶数,令 \(n = 2k\) 和 \(H(x) := \prod_{j = 0}^{k - 1}\left(x - q^j\right)\),那么
\[
M(x) = H(x) \cdot q^{k^2} \cdot H\left(\frac{x}{q^k}\right)
\]
这使得我们可以快速计算 \(M(x)\).然后用 Bluestein 算法来计算 \(M'(1), \dots, M'(q^{n - 1})\).令 \(c_i := f\left(q^i\right)/M'\left(q^i\right)\),我们有
\[
f(x) = M(x)\left(\sum_{i = 0}^{n - 1}\frac{c_i}{x - q^i}\right)
\]
因为 \(\deg f(x) < n\),我们只需计算 \(\sum_{i = 0}^{n - 1}\frac{c_i}{x - q^i}\bmod{x^n}\),其中 \(\frac{c_i}{x - q^i} \in \mathbb{C}\left\lbrack\left\lbrack x\right\rbrack\right\rbrack\),也就是
\[
\begin{aligned}
\sum_{i = 0}^{n - 1}\frac{c_i}{x - q^i} \bmod x^n &=
-\sum_{i = 0}^{n - 1}\left(\sum_{j = 0}^{n - 1} c_i q^{-i(j+1)}x^j\right) \\
&= -\sum_{j = 0}^{n - 1} C\left(q^{-j - 1}\right) x^j
\end{aligned}
\]
其中 \(C(x) = \sum_{i = 0}^{n - 1} c_i x^i\).我们可以用 Bluestein 算法来计算 \(C\left(q^{-1}\right), \dots, C\left(q^{-n}\right)\).
简单来说,我们分别进行下面的计算:
- 用减治法(decrease and conquer)计算 \(M(x)\);
- 用 Bluestein 算法计算 \(M'(1), \dots, M'(q^{n - 1})\);
- 用 Bluestein 算法计算 \(C\left(q^{-1}\right), \dots, C\left(q^{-n}\right)\);
- 用一次多项式乘法计算 \(f(x)\).
其中每一步的时间复杂度都等于两个次数小于等于 \(n\) 的多项式相乘的时间复杂度.
模板实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 | std::vector<uint> InvCZT(const std::vector<uint>& f, uint q) {
if (f.empty()) return {};
const int n = f.size();
if (q == 0) {
// f[0] = f(1), f[1] = f(0)
assert(n <= 2);
if (n == 1) return {f[0]}; // deg(f) < 1
return {f[1], (f[0] + MOD - f[1]) % MOD}; // deg(f) < 2
}
// prod[0 ≤ i < n] (x - q^i)
const auto DaC = [q](auto&& DaC, int n) -> std::vector<uint> {
if (n == 1) return {MOD - 1, 1u};
// H = prod[0 ≤ i < ⌊n/2⌋] (x - q^i)
const std::vector<uint> H = DaC(DaC, n / 2);
// HH = H(x / q^(⌊n/2⌋)) * q^(⌊n/2⌋^2)
std::vector<uint> HH = H;
const uint iqn = InvMod(PowMod(q, n / 2));
uint qq = PowMod(q, (ull)(n / 2) * (n / 2));
for (int i = 0; i <= n / 2; ++i)
HH[i] = (ull)HH[i] * qq % MOD, qq = (ull)qq * iqn % MOD;
std::vector<uint> res = Product(H, HH);
if (n & 1) {
res.resize(n + 1);
const uint qnm1 = MOD - PowMod(q, n - 1);
for (int i = n; i > 0; --i) {
if ((res[i] += res[i - 1]) >= MOD) res[i] -= MOD;
res[i - 1] = (ull)res[i - 1] * qnm1 % MOD;
}
}
return res;
};
const std::vector<uint> M = DaC(DaC, n);
// C[i] = (M'(q^i))^(-1)
std::vector<uint> C = InvModBatch(CZT(Deriv(M), q, n));
// C[i] = f(q^i) / M'(q^i)
for (int i = 0; i < n; ++i) C[i] = (ull)f[i] * C[i] % MOD;
// C(x) ← C(q^(-1)x)
const uint iq = InvMod(q);
uint qmi = 1;
for (int i = 0; i < n; ++i)
C[i] = (ull)C[i] * qmi % MOD, qmi = (ull)qmi * iq % MOD;
C = CZT(C, iq, n);
for (int i = 0; i < n; ++i)
if (C[i] != 0) C[i] = MOD - C[i];
std::vector<uint> res = Product(M, C);
res.resize(n);
return res;
}
|
参考文献
- Bostan, A. (2010). Fast algorithms for polynomials and matrices. JNCF 2010. Algorithms Project, INRIA.
本页面最近更新:,更新历史
发现错误?想一起完善? 在 GitHub 上编辑此页!
本页面贡献者:OI-wiki
本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用